Klasse: 9

Name:

Lehrer: Dr. König

Datum: 22.03.2011

Nenne acht konkrete Informationen ggf. mit Zahlen oder Rechnung, die du aus 1. dieser Angabe ²³₁₁Na⁺ ablesen kannst?

•	•
•	•
•	•
•	•

2. Das Kugelwolkenmodell

Zeichne die Kugelwolkenmodelle für die Teilchen H, S, Br - sowie Ga³⁺ gebe deren Bezeichnung an.

н	S	Br -	Ga ³⁺

Atombau. Ergänze alle Zellen auch die Vorgaben in der linken Spalte. TIPPs: - Bei geladenen Teilchen handelt es sich um lonen. 3.

- Die Tabelle enthält nur natürliche Zahlen! $\mathbb{N} = \{0;1;2;3;\ldots\}$

Symbol	Name	Elektronen- zahl	Protonen- zahl	Neutronen- zahl	Massenzahl
²²⁶ Ra					
Pb			82		
		20	20		40
	Neutron				
K⁺	-Kation				
		36	35		79

Klasse: 9

Name:

Lehrer: Dr. König Datum: 22.03.2011

4. Ergänze die u.a. Tabelle für das Kalium-Atom ³⁹/₁₉ K!

	1. Periode	2. Periode	3. Periode	4. Periode
Elektronenwolkenzahl				
Elektronenzahl				

5. Welche Aussage kann dieser Darstellung **definitiv** entnommen werden, wenn du nicht weißt, ob es sich um ein geladenes Teilchen handelt?

Kreuze an.

- Das Teilchen ist ein Berylliumatom.
- Das Teilchen hat zwei halbbesetzte Elektronenwolken.
- Das Teilchen hat keine vollbesetzten Elektronenwolken.
- Das Teilchen hat 5 Neutronen.
- Das Teilchen hat 4 Elektronen.
- **6**. Nenne die Atome, um welches es sich bei Nummer 5 und Nummer 7 handelt, wenn man weiß, dass es ungeladene Teilchen sind?

Nr.5:

Nr.7:

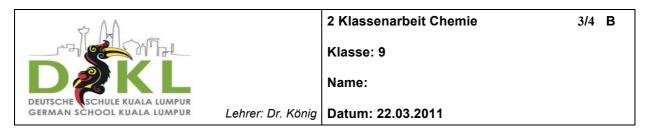
7. Welche Aussagen kannst du dieser Darstellung **definitiv nicht** entnehmen, wenn du nicht weißt, ob es sich um ein geladenes Teilchen handelt?

Kreuze an. TIPP: Was richtig ist nicht ankreuzen!

- Das Teilchen ist ein Arsenatom.
- Das Teilchen hat drei halbbesetzte Elektronenwolken.
- Das Teilchen hat eine vollbesetzte Elektronenwolke.
- Das Teilchen hat 15 Protonen.
- Das Teilchen hat 15 Elektronen.
- **8. Berechne** die durchschnittliche Atommasse, wenn die folgenden Isotope mit den genannten Massen in dem angegebenen Teilchenverhältnis in der Natur vorkommen:

• 12₆C

99 %


99 Teilchen zu

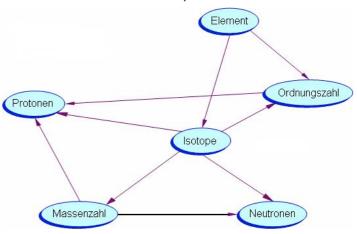
• ¹³C

1 %

1 Teilchen

TIPP: Der Durchschnitt ist immer kleiner als der größte Wert und größer als der kleinste Wert!

- **9. Zeichne** das Kugelwolkenmodell von drei Teilchen mit der gleichen Elektronenzahl. **Benenne** die Teilchen und **ordne** sie der Größe (Atomradius) nach!
- **10. Nenne** das Kriterium, wann man von einem stabilen Teilchen spricht!


11. Aufbau der Materie

Schreibe die entsprechenden Zahlen an die Pfeile in der Abbildung, so dass die Aussagen Sinn machen! (Lies von hier — nach hier →)

- 1. haben dieselbe
- 2. entspricht der Zahl der Protonen plus
- 3. kann bestehen aus
- 4. entspricht der Zahl der
- 5. unterscheiden sich in der Anzahl der
- 6. unterscheiden sich in der
- 7. entspricht der Zahl der Neutronen plus
- 8. haben die gleiche Anzahl an
- 9. hat eine bestimmte

TIPP: - Die Grammatik hilft!

- Jede Zahl kommt nur einmal vor!

Achtung: Bei der Zahl links oben handelt es sich um die Ordnungszahl. Die Zahl unter dem Elementnamen ist die relative / gerundete Atommasse / Massenzahl.

1 H Wasserstoff 1,0079	2	13	14	15	16	17	2 He Helium 4,0026 2	
3 Li	4 Be	5 B	6 C	7 N	8 O	9 F	10 Ne	
Lithium	Beryllium	Bor	Kohlenstoff	Stickstoff	Sauerstoff	Fluor	Neon	
6,941	9,0122	10,81	12,011	14,007	15,999	18,988	20,179	
2/1	2/2	2/3	2/4	2/5	2/6	2/7	2/8	
11 Na	12 Mg	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
Natrium	Magnesium	Aluminium	Silicium	Phosphor	Schwefel	Chlor	Argon	
22,99	24,305	26,982	28,086	30,974	32,06	35,453	39,948	
2/8/1	2/8/2	2/8/3	2/8/4	2/8/5	2/8/6	2/8/7	2/8/8	
19 K	20 Ca	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
Kalium	Calcium	Gallium	Germanium	Arsen	Selen	Brom	Krypton	
39,098	40,08	69,735	72,59	74,922	78,966	79,904	83,80	
2/8/8/1	2/8/8/2	2/8/18/3	2/8/18/4	2/8/18/5	2/8/18/6	2/8/18/7	2/8/18/8	
37 Rb	38 Sr	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
Rubidium	Strontium	Indium	Zinn	Antimon	Tellur	lod	Xenon	
85,458	87,62	114,82	118,69	121,75	127,60	126,90	131,30	
2/8/18/8/1	2/8/18/8/2	2/8/18/18/3	2/8/18/18/4	2/8/18/18/5	2/8/18/18/6	2/8/18/18/7	2/8/18/18/8	
55 Cs	56 Ba	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
Cäsium	Barium	Thallium	Blei	Bismut	Polonium	Astat	Radon	
132,91	137,33	204,37	207,19	208,98	208,98	(210)	(222)	
2/8/18/18/	2/8/18/18/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32	
8/1	8/2	18/3	18/4	18/5	18/6	18/7	18/8	
87 Fr Francium (223) 2/8/18/32/ 18/8/1	88 Ra Radium 226,03 2/8/18/32/ 18/8/2	ule:Fa	echer:DSKI	L_Chemie:	Ch09:_0	Ch09_2010	-11:Ch09_e	exam_2:Ch09_exam2_gym.do

2 Klassenarbeit Chemie

4/4 B

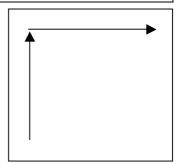
Klasse: 9

Name:

Lehrer: Dr. König

Datum: 22.03.2011

12. Beantworte die folgenden Fragen durch Ankreuzen. Kreuze alle richtigen Antworten an. Kreuze nur diese an, bei denen du dir sicher bist, denn falsche Antworten zählen Minuspunkte. Du kannst nicht weniger als null Punkte pro Kasten erhalten.


Welche Teilchen tragen we-	□ Protonen A	 es ein Elektron aufnimmt. 	В			
sentlich zur Atommasse bei?	□ Elektronen	 es zwei Elektronen aufnimmt. 				
(A)	□ Anionen	 es sechs Elektronen aufnimmt. 				
Ein Schwefel teilchen hat vol-	□ Kationen	□ ihm zwei Elektronen entzogen werd	den.			
le Schalen, wenn (B)	□ Neutronen	□ ihm sieben Elektronen entzogen we	erden.			
	□ gleicher Ordnungsza	hl aber unterschiedlicher Neutronenza	hl.			
lonen im Vergleich zu den	gleicher Massenzahl aber unterschiedlicher Neutronenzahl.					
Atomen der gleichen Sorte,	gleicher Massenzahl aber unterschiedlicher Elektronenzahl.					
(also dem gleichen Element- symbol) sind immer Stoffe mit	gleicher Protonenzahl aber unterschiedlicher Elektronenzahl.					
symbol) sind illiner Stone lint	gleicher Elektronenzahl aber unterschiedlicher Protonenzahl.					
		aber unterschiedlicher Neutronenzahl				
Isotope sind Stoffe mit	•	aber unterschiedlicher Elektronenzahl				
•	_	ıhl aber unterschiedlicher Neutronenza				
		ahl aber unterschiedlicher Protonenzal				
	l –	nl aber unterschiedlicher Massenzahl.				
	□ immer größer als die	Massenzahl.				
	□ in der Regel größer a	als die Massenzahl.				
Die Ordnungszahl ist:	□ gleich der Massenza	hl.				
_	in der Regel kleiner als die Massenzahl.					
	immer kleiner als die Massenzahl.					
	 mehr Elektronen als 	ein Sauerstoffatom.				
	□ weniger Elektronen a					
Ein Sauerstoff-Anion O ²⁻ hat	 mehr Protonen als ein Sauerstoffatom. 					
	weniger Protonen als ein Sauerstoffatom.					
	immer genauso viele Neutronen wie ein anderes Sauerstoffatom.					
		us als ein Sauerstoffatom.				
Ein Sauerstoff-Anion O ²⁻ hat		wie ein Sauerstoffatom.				
Elli Sauerstoli-Allion O Hat	 einen kleineren Radius als ein Sauerstoffatom. eine größere Stabilität als ein Sauerstoffatom. 					
	 eine größere Stabilität als ein Sauerstoffatom. eine geringere Stabilität als ein Sauerstoffatom. 					
		gibt es nur eine Kugelwolke.				
		chale sind immer vier Kugelwolken auß	ßen.			
	□ Jede Kugelwolke wird erst einfach dann doppelt besetzt.					
Welche der nebenstehenden	□ Die äußeren Kugelwolken sind tetraedrisch angeordnet.					
Sätze zum Kugelwolkenmo-	□ Die Elektronen der inneren Schalen werden nicht eingezeichnet.					
dell sind richtig?	□ Volle Schalen werden als Vollkreis gezeichnet.					
	□ Ausnahmslos das fünfte Elektron beginnt die Doppelbesetzung.					
	□ Atome mit vollen Schalen haben immer 8 Außenelektronen					
	□ Protonen im Kern werden nicht einzeln gezeichnet.					
	□ Neutronen sind nicht	•				
	🛘 🗆 Ionen werden in dies	sem Modell nicht sichtbar.				

13. Eigenschaften der Elemente:

Schreibe neben den Pfeil, ob der Atomradius in der Hauptgruppe und der Periode jeweils steigt oder sinkt. Beachte unbedingt die Blickrichtung (Pfeile von links nach rechts und unten nach oben)

Begründe eine deiner Richtungen ausführlich!

⊕ Viel Erfolg!!! ∠

